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ABSTRACT: This study investigates the use of an innovative light-weight rotational device for the passive 

protection of structures from the effects of near-field seismic ground motion. A key factor in the 

effectiveness of these devices is that, through rotation, a relatively small mass can be used to create a device 

that has a large effective inertial mass. In this work, optimum values of the system are formulated by an 

exact analytical H2 optimization criteria. The system and optimum values used in this study investigate the 

response of a structure due to a generalized representation of a near-field seismic ground motion. 

INTRODUCTION  

Significant investigations have been made into the effectiveness of tuned mass dampers (TMDs) (Figure 1) 

at protecting structural system subjected to near fault seismic ground motion, with most studies showing 

that typical TMDs under a short-duration input do not response in time to reduce the peak displacement of 

the structural system (Sladek and Klingner 1983). While typical TMDs are ineffective at protecting systems 

from near fault ground motions, large mass ratio TMDs have been shown to be effective under short 

duration inputs (Matta 2013); however, these systems are not common due to the costs associated with 

providing this increased TMD mass. 

(Ikago, Saito, and Inoue 2012) purposed a new passive control device, shown in Figure 2, which is referred 

to as a Tuned Viscous mass Damper (TVMD).  This device consists of a rotational inertial mass connected 

to a primary structure with spring and damping elements.  The rotational inertial mass converts translational 

motion into localized rotation of a mass.  The effective mass of the TVMD is related to its rotational moment 

of inertia and the travel distance per rotation of the device; consequently, the TVMD is generally able to 

provide a rotational inertial mass system with lower dynamic amplification factors while utilizing a smaller 

physical mass.  

 

Figure 1. Primary structure with TMD                                                                                        

 

Figure 2. Primary structure with TVMD 

The TVMD has been formulated and optimized to minimize the maximum amplification in the frequency 

domain by (Ikago, Saito, and Inoue 2012) who derived functions for the associated optimal damping and 

frequency ratio parameters.  This optimization of the TVMD was done using the fixed point method, which 

is an approximate form of H- infinity optimization that has been previously utilized for TMD optimization 

(Den Hartog 1985).  This method optimizes the maximum responses based on two fixed points in the 

system’s frequency domain response curve that are invariant to the damping.  
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H2 norm, another common optimization criteria, minimizes the square root of the area under the frequency 

domain response curve (Crandall and Mark 1963).  Although the maximum amplitude is generally higher 

with the H2 criteria compared to the H-infinity criteria, H2 optimization produces a lower response over a 

broader range of frequencies, which can be more beneficial during random excitations. The H2 criteria has 

been developed and formulated for different types of traditional and non-traditional TMDs (Cheung and 

Wong 2011); however, H2 optimization has not been presented for a system utilizing a TVMD.  

In this study, a SDOF primary system with an attached TVMD is presented in state space form, then used 

to obtain the transfer function for the system in the frequency domain. An exact H2 optimization solution 

for base excitation is formulated and solved. The H2 optimal frequency and damping ratio for the TVMD 

system are presented and the resulting system response is compared with previously obtained H-infinity 

optimization results. Additionally, numerical simulations of SDOF structures equipped with H2 and H-

infinity optimized TVMDs and a TMD optimized with H2 subjected to near-field seismic ground motion 

will be compared. 

OPTIMIZATION 

The equations of motion of the TVMD system are 

 1 1 1 1 1 1 1 1( ) ;     ( ) 0omx kx k x x mx m x c x k x x           (1) 
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The Eq. (1) can be written in the state space form with the displacement of the main mass as the output: 

 q( )=Aq( )+B ( );    ( ) Cq( ) ( )t t u t y t t Du t    (2) 

Using the system stiffness, mass, and damping matrices, the states and state space matrices are 

 
1 11 0 0 1 0 ;   

0
q=[x x];  x=[ ];  A ;  B [1 0 0 0];  [0]

K C

I
x x C D

M M 

 
    

  

   
 

  (3) 

For H2 Optimization, the dimensionless transfer function in frequency domain is  
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Considering 0S  as the spectral density, the variance of the output is  
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Utilizing integration tables (Gradshteyn and Ryzhik 1994), the result of this expression is 

  5
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The H2 optimum tuning frequency ratio and damping are the solution of Eq. (7).  
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Solving Eq. (7) leads to functions for the H2 optimum tuning and damping ratio for shown in Eq. (8). 

 2 4 21 1
3 6 9 36 4;      1 ( 2)

2
       


            (8) 

 

 

Figure 3. TVMD H2 and H-infinity Optimization 

Response                                  

 

Figure 4. H2 Optimization of TMD and TVMD 

Response 

The system frequency responses considering a 10% effective mass ratio are presented in Figure 3 for the 

H2 optimized TVMD and the H-infinity optimized TVMD (Ikago, Saito, and Inoue 2012) and in Figure 4 

for the H2 optimized TVMD and H2 optimized TMD (Warburton 1982) . 

GROUND MOTION RESPONSE 

To investigate the system’s time-history response, a pulse loading can be numerical applied to the system.  

The analytical ground motion model proposed by (He and Agrawal 2008) is utilized for this investigation.  

The time-history of this ground motion model is 

   0( ) ( / )sin( ) cos( ) ;    n at
px t Ct e n t a t v t v t t          (9) 

in which   is the dominate pulse frequency, C  is the amplitude scaling factor, n  is the parameter 

controlling the skewness the pulse (speed of the buildup of pulse amplitude), a  is the pulse decay factor, 

v  is phase angle of the sinusoidal component, and ot  is the beginning time of the pulse.  The acceleration 

time-history utilized in this analysis is presented in Figure 5 and was produced with the parameters 2 

, 1n  , 2.51a  , and 7.17C   (Xu et al. 2007).  This ground motion has a peak pulse velocity of 1 m/s and 

peak acceleration of 0.6g.  

Figure 6 shows the time-history responses of system subjected to the pulse shown in Figure 5 with 10% 

mass ratio TVMDs with parameters from the H2 and H infinity optimizations. Figure 7 shows the pulse 

response of the uncontrolled system, the H2 optimized TMD, and the H2 optimized TVMD.  Furthermore, 

the peak displacement of the structure with H2 and H-infinity optimized TVMDs in response the ground 

motion with varied dominate pulse frequency is shown in Figure 8. 

CONCLUSION 

The H2 optimization of the tuned viscous mass damper (TVMD) is performed in this paper and close-

formed expressions for the optimum parameters to minimize the area under the random excitation frequency 

response curve are derived. The results of this optimization show that the TMVD leads to a system with an 

overall lower frequency response than a system with a TMD of the same effective mass.  

The behavior of the optimum system was also investigated using numerical simulations of the response of 

the system to a pulse model of a near fault ground motion.  This analysis demonstrated that the TVMD 

system had a superior time-history response compared to the TMD system.  Additionally, the H2 optimized 

TVMD system had slightly slower pulse response attenuation compared to the H-infinity optimized TVMD, 
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but the H2 optimized system demonstrated superior peak displacement reduction when the dominate 

frequency of the pulse input was varied (Figure 8).  

 

Figure 5. Ground motion pulse model representation 

 

Figure 6. Time history response of TVMD H2 and H 

infinty optimum values 

 

Figure 7. H2 Optimized TMD , TVMD  and  No 

Control SDOF response. 

 

Figure 8. Frequency response of H2 and H infinty of 

TVMD under pulse load. 
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